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Time-dependent problems in kinetic theory described by the Krook and other model 
kinetic equations can be formulated as systems of nonlinear Volterra integral equations. 
The derivation of these equations is described and a numerical procedure for solving 
them is presented. The nonlinear piston problem for the Krook equation is used to 
illustrate the discussion. 

1. INTRODUCTION 

Most nonlinear problems in kinetic theory can be treated only through approxi- 
mation procedures of unknown accuracy. Krook [5,6], however, has observed 
that the simplicity of the statistical model of molecular interactions renders many 
problems amenable to numerical treatment. His observation is valid for other 
models as well and provides an opportunity for evaluating the accuracy of 
approximation procedures through the comparison of approximate and exact 
numerical solutions. 

One approach is the formulation of initial-boundary-value problems for model 
kinetic equations as systems of nonlinear integral equations for the basic moments. 
Steady problems give rise to Fredholm integral equations, while time-dependent 
problems give rise to Volterra integral equations. Although these equations are 
complicated and highly nonlinear, they can be solved with carefully constructed 
numerical methods. 

Anderson [2, 3,4] began a program to develop sophisticated numerical methods 
for solving a sequence of prototypical problems in kinetic theory. He developed 
methods for Fredholm equations which he used to solve several one-dimensional 
steady problems. Richter [9] extended the program to two-dimensional steady 
problems, and we extended it to time-dependent problems by developing numerical 
methods for Volterra equations. This paper describes how one of our methods 
can be applied to time-dependent problems in kinetic theory. 

We first formulate the Volterra integral equations describing such problems. 
We then describe in general terms a general numerical procedure for solving these 
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equations and indicate how the various parts of the procedure can be tailored to 
accommodate particular problems. Finally, to illustrate our procedure, we 
examine the nonlinear piston problem for the Krook equation. 

2. INTEGRAL EQUATION FORMULATION 

Consider the general model kinetic equation 

af/lat + v * q/ax = v(@ -f). (1) 

The distribution function f(v, x, t) is proportional to the probability density of 
molecular velocity v = (u, v, w) as a function of position x = (x, y, z) and time t. 
The convective rate of change off, represented by the derivative on the left side 
of the equation, is balanced by the rate of change offdue to molecular interactions, 
represented by the model collision integral on the right. The function @(v, x, t) 
is a given function of a finite set of moments off. Different model equations result 
for different choices of @. Thus the well-known Krook equation results if @ is 
chosen to be the local isotropic Gaussian or Maxwellian distribution 

F(n, q, T) = n(2~rT)--~/~ exp(-(v - q)2/2T), (2) 

where the moments n, q, and T are the local number density, flow velocity, and 
kinetic temperature, defined by the equations 

II = s fdv, 

nq = s vfdv, 

3nT + nf = I Pfdv. 

(3) 

A more general model equation known as the ellipsoidal statistical model equation 
results if @ is chosen to be an anisotropic Gaussian distribution. The collision 
frequency v(x, t) is a smooth positive functional off It is generally prescribed as a 
function of n and T in accordance with the law of force between molecules. We 
have assumed implicitly that the problem has been formulated in dimensionless 
form through a characteristic time & number density 6, and velocity fi, from which 
we derive a characteristic length E = gt and temperature T = Ma/k, where m is 
the molecular mass and k is Boltzmann’s constant. 

We can transform the integroditferential kinetic equation (1) into a pure integral 
equation by integrating along the characteristics of the convective differential 
operator. Consider an arbitrary point x in configuration space corresponding at 
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time t to a point within the gas. For an arbitrary point v # 0 in velocity space, 
define a characteristic line through x with direction v. A convenient parametric 
representation of this line is 

y(s) = x - v(t - s). 

Along this characteristic, the kinetic equation may be written in the form 

WWf(% Y, .9 + 4Y, s>f(v, Y, 4 = dY, d @(v, 979. 

Let x, be the first boundary point encountered on traversing the characteristic 
in the -v direction, and let te denote the corresponding value of the parameter S. 
If tB < 0, set tB = 0. The formal integration of the kinetic equation from tB to t 
then yields 

f(v, x, t) = f(v, Y&J, b) 4&b) + ( U(Y, ~1 @(VP Y, s> e(t, s> & (41 

where 

e(t, s) = exp (- S,’ u(y(s’), s’) LW), 

and f(v, y(Q), tB) is an initial or boundary distribution. 
We assume that the gas is initially in equilibrium. Hence the initial distribution 

is the Maxwellian distribution 

F(n,, q. , To) = 4d27rTo)-3/2 exp(-(v - qo)2/2To). (6) 

We further assume that molecules impinging on the boundary accommodate 
perfectly to the boundary velocity qB and temperature TB and subsequently are 
emitted according to the Maxwellian distribution 

FbB , qB , TB) = ~B(~TTB)-~‘~ exp(-(v - QBj2/2TB). (7) 

The pseudodensity nB and temperature TB are generally determined as part of the 
solution of the problem so as to assure zero net mass and energy flux normal to 
the boundary, that is, 

I DB . (v - qB) fk XB , t> dv = 0, 

s 

(8) 

% - (V - qB)(v - Qd2f(V, XE , t> dv = 0, 

where II, is the unit normal vector to the bounding surface at x, . The velocity QB 
is usually specified but could be determined as part of the problem if equations 
describing the dynamic behavior of the boundary were prescribed. 

58III911-3 
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Since v, @, and the boundary distribution involve only a finite set of moments, 
the integral equation (4) reveals that the distribution function f is completely 
determined by these basic moments. Furthermore, we can use this equation to 
construct integral equations for these moments since they are defined in terms off. 
These equations have the great advantage of depending on only four independent 
variables, x and t. For example, for the Krook equation we can construct a closed 
set of integral equations for n, q, T, nB , and TB by setting @ in Eq. (4) equal to the 
local Maxwellian distribution (2) and substituting the resulting expression into 
Eqs. (3) and (8). Once the solution of these equations has been found, the distri- 
bution function, if desired, can be obtained from Eq. (4) by quadrature. 

The general form of these integral equations is illustrated by the equation for 
the moment, 

%jk(X, t> = j uiviwkf (v, x, t) dv. 

It is simple to show that 

mifk(x, t) = jr1 dv uiv~wk~(rzo , q. , To) e(t, 0) 

+ s,, dv uiViWkF(n~, qB , TB) &, tB) 

+ jot ds jva dv uidwk~(y, s) @(v, y, s) e(t, s), (9) 

where the Vi are appropriate subsets of velocity space. These integral equations 
are similar in form to the equations for steady problems, but their kernels are 
smooth, whereas the steady equation kernels contain logarithmic singularities [3] 
which arise because the steady convective operator vanishes when v = 0. Due to 
their smooth kernels, the unsteady equations are in some respects easier to handle 
than their steady analogs. 

3. NUMERICAL PROCEDURE 

We have shown how initial-boundary-value problems can be formulated as 
systems of nonlinear Volterra integral equations. These equations are impervious 
to attack by analytical methods and must be solved numerically. We seek approxi- 
mations to the solution on a discrete set of time mesh points Y = {ti}, where 
t,-, = 0 and ti+l = i t + d ti for i > 0. The problem is discretized by approximating 
the dependent variables at each ti by an interpolation scheme involving a finite 



TIME-DEPENDENT KROOK EQUATION 33 

number of free parameters and approximating the integral operators by a 
quadrature scheme. At each ti the discretized equations are enforced on a set 37 
of collocation points sufficient in number to determine the free parameters. The 
set of nonlinear transcendental equations obtained thereby can then be solved 
through an iteration scheme. In this way, the solution is computed step by step 
in time. 

To devise an interpolation scheme, we must choose an appropriate space 
variable, deal if necessary with an unbounded domain, and select an efficient 
discrete representation. The choice of space variable depends on the structure of 
the solution and the geometry of the problem. For example, consider first a gas 
confined to a half-space bounded by an infinite flat plate initially at x = 0. The 
plate starts impulsively and thereafter moves with a constant velocity, producing 
a shock wave which moves away from the plate. The collisionless solution of this 
problem, valid for small times, is a function of the similarity space variable 5 = x/t. 
Hence it is computationally convenient to use the similarity variable for small times 
because it stretches and smooths the solution, making it numerically tractable. 
Consider next the flow generated by a circular cylinder of unit radius which starts 
impulsively and thereafter moves with a constant velocity. Given the problem 
geometry, it is natural to use polar coordinates (r, 0) fixed in the cylinder rather 
than Cartesian coordinates (x, JJ). For small times a similarity variable is again 
appropriate. However, for large times the variable p = arcsin(l/r) is useful 
because it can be shown that for sufficiently rarefied gases, the steady solution 
varies with I roughly as arcsin(l/r). This transformation has the additional 
advantage of mapping r into a finite interval. An even more powerful transfor- 
mation can be obtained by applying an additional bilinear transformation to p. 
This provides additional flexibility in accommodating the structure of the solution. 
Note that we are not completely reformulating the problem in terms of new 
coordinates because this would introduce geometric pseudoforce terms and 
complicate the definition of characteristics. 

We have seen how an appropriate transformation can be used to map an 
unbounded domain into a bounded one. An alternative procedure is to partition 
the unbounded domain into two sets: a finite set X on which the flow is not near 
equilibrium, and its complement X. A discrete representation is used on X and an 
asymptotic representation is used on X. In the first example cited above, the form 
of the solution for large x can be deduced analytically. It can be shown that the 
moment miik, where j and k are even, decays as 

mijk(x, t) - mijk(CO, t) - a(X - U,t)“lS exp(-+(x - U,t)2/3), 

where v, is the shock speed and 01 and /3 are certain constants. Note that this mode 
of decay is different from that predicted by continuum theory. Hence a “tail” of 
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this form can be fitted to the discrete representation, thereby yielding a represen- 
tation over the entire domain. 

Given a space variable and a finite domain of interpolation, we must still choose 
an efficient representation. The choice is conditioned by two conflicting criteria of 
efficiency. On the one hand, the number of free parameters in the representation 
must be minimized; on the other hand, an inexpensive process for evaluating the 
moments is essential. Splines satisfy both these criteria reasonably well, but their 
applicability is limited because the boundary values required for their specification 
are generally unavailable. However, splines can be used in problems where these 
values can be deduced from symmetries present in the problems. For example, 
splines in the angular variable 19 can be used for exterior flows around cylinders. 
Another possible solution to this dilemma is the use of two representations: a 
primary representation adapted to the structure of the solution and selected for 
efficiency of sample utilization, and a secondary representation derived therefrom 
and selected for efficiency of evaluation. One useful primary representation is a 
finite Chebysev polynomial expansion. Its coefficients can be obtained from the 
well-known discrete orthogonality conditions under summation over certain sets 
of interpolation points. Chebysev expansions are particularly well suited for flows 
confined between two surfaces such as plane, cylindrical, and spherical couette 
flows because the sample points tend to cluster near the boundaries where they are 
best utilized. One possible secondary representation is a set of tables of the 
moments at equispaced sample points. Low-order Lagrange interpolation, centered 
if possible, can be applied to these tables to interpolate the solution in time and 
space at nonmesh points. The Lagrange rather than the difference or iterative form 
should be used because the Lagrange coefficients are identical for the different 
moments. Hence the relatively large amount of work required to evaluate the 
coefficients is spread over several variables, making the scheme efficient. 

Three integral operators must be approximated: the time integration with 
respect to S, the velocity integration with respect to v, and the time integration 
implicit in e(t, s). 

Although the moments vary smoothly in time, the time integrand can vary 
significantly over the subintervals [ti , t<+J particularly for small times. Hence 
standard interpolatory quadrature formulas employing the ti as abscissas are 
generally inadequate. Instead, we approximate the time integration through a 
composite quadrature scheme employing the subintervals [ti , ti+J. If the sub- 
intervals are of equal lengths, the Ralston composite formulas [8] are preferred 
because they are more accurate than the corresponding Newton-Cotes or Gaussian 
formulas. They are obtained by using Gaussian techniques in the interior of each 
subinterval and by requiring that the endpoints of each subinterval be abscissas 
with weights of equal magnitude but opposite sign. Hence when the formulas for 
each subinterval are summed, only the endpoints of the whole interval remain. 
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However, since the dt, may be unequal, we use low-order Gauss-Legendre 
formulas over each subinterval. Thus for example, if the n-point formula is used 
on each subinterval, the set 9’ of s quadrature points for t E r is 

where the 0, are the Gauss-Legendre abscissas normalized to the interval [0, 11. 
Although the moment equations involve three separate velocity integrations, the 

following remarks are applicable to all three. Each integration can be approximated 
in principle through a product quadrature scheme. The integrand in the u, v, and w 
integrations often is exponentially decaying. To adapt to this characteristic, each 
interval of integration should be divided into subintervals whose length is inversely 
proportional to the local variation of the integrand. However, this is difficult to do 
in a predetermined manner because the detailed structure of the integrand is 
difficult to ascertain. An adaptive quadrature scheme can be used to mimic this 
process. A simpler alternative is to divide the interval into equal subintervals whose 
length is a function of x, t, and possibly s, chosen to resolve the integrand 
adequately. In some problems, this function can be determined empirically using 
the collisionless solution to determine the qualitative behavior of the integrand. 
Periodically during the actual integration, this function is examined and modified 
if necessary. Low-order Ralston or Gaussian quadrature formulas should be used 
on each subinterval to match the accuracy of the time quadrature. The set Y of v 
quadrature points is the Cartesian product of the sets of U, u, and w quadrature 
points. Often the interval of integration is infinite. In such cases, we partition the 
interval into two sets: a set of u for which y E X, where the flow is not near equi- 
librium, and its complement for which y EX. The composite rule is applied on the 
first set. On the second a Gaussian formula for semi-infinite intervals is used, or if 
the collision frequency v is constant, the integrand is approximated using the 
equilibrium solution and the integral is evaluated analytically in terms of higher 
transcendental functions. 

The most expensive quadrature is that in e(t, S) because it lies at the heart of the 
computation. This quadrature must be performed at each time t E Y, collocation 
point x E 3, time quadrature point s E 9, and velocity quadrature point v E V. 
Rather than perform the quadrature repeatedly, we instead compute a table of 
In e(t, s) for an appropriate set of sample points in x, s, and v and interpolate 
in this table to obtain the required values of e(t, s). If the set of s sample points is 
chosen to be (s 1 s E Y, s < t}, the composite time quadrature scheme described 
above can be used for the s’ integration. Furthermore, additional interpolations 
of the moments in time are not required because the interpolants at the s’ 
quadrature points are already required by the s integration from 0 to t. 



36 D. S. WATANABE 

The general form of the discretized equations is illustrated by the equation for 
%jk(X, t>, 

+ c w(v) uiuiwkF(ng , qB , T,) e(t, tB) 
voVa(x.t) 

+ ,;,t, w(s) c w(v) uidwkv(y, s) @(v, y, s) e(t, s). 
veV’,(x*t.s) 

Here, w(v) and w(s) denote appropriate quadrature weights, the functions F, v, @, 
and e denote appropriate interpolants, and the interpolants e(t, s) are obtained 
from the tabular values 

lne(t, s) = - 1 w(d) v(y(s’), s’). 
s’EY(t)-.vP(S) 

The set of nonlinear transcendental equations obtained at each ti by enforcing 
the discretized moment equations at the collocation points X has the form 
m = g(m). This system of equations has several important properties. First, the 
number of unknowns is large. Second, all the unknowns are explicitly coupled and 
hence the system is dense. Third, although the interpolation scheme can be 
designed so that the moments sought at ti are used in time interpolations only on 
the interval [tip1 , tJ, the iteration function g is still complicated and hence difficult 
and expensive to evaluate. Fourth, the general structure of the solution is known 
and is preserved by g in the neighborhood of the solution. The successive substi- 
tution iteration naturally suggests itself for this system. The iteration can be 
initiated using an approximation obtained by extrapolation from the solution at 
previous times. This simple iteration is useful only if it converges sufficiently 
rapidly. Fortunately this was the case in our calculations, but certain problems 
may require more sophisticated schemes. However, many well-known schemes for 
nonlinear systems cannot be used because of the properties of the system. For 
example, Newton’s method is too expensive because of the density and complexity 
of the Jacobian. Anderson [I] has developed an extrapolation algorithm tailored 
to such systems. His algorithm is a generalization of false position and entails the 
linearization of the iteration function about several of the most recent iterates. 
The algorithm has been applied successfully to a variety of systems arising in the 
solution of nonlinear integral equations. 

This procedure is not self-starting because the interpolation scheme involves 
the solution at several time steps. The required block of starting profiles can be 
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obtained simultaneously through Picard iteration. The quadratures are performed 
as outlined above, and the collisionless solution is used as the initial iterate. Once 
the starting values are obtained, the solution can be advanced step by step 
in time. 

A rigorous error analysis of a procedure of this complexity would be extremely 
difficult and furthermore would yield an error bound so grossly pessimistic as 
to be worthless. We resort instead to an heuristic analysis which examines the self- 
consistency of the procedure under variation of the interpolation, quadrature, 
and iteration schemes. The variation of the numerical results under such pertur- 
bations provides heuristic estimates of the error. In addition the conservation laws 
and available limiting solutions provide certain algorithm-independent checks. 
Finally we can take some comfort in the knowledge that this procedure is modeled 
after a simpler one whose convergence has been rigorously established for a class 
of model problems [lo]. 

4. PISTON PROBLEM 

We have studied a variety of time-dependent problems using the integral 
equation approach. A simple illustration of our procedure is provided by the 
piston problem. Consider a monatomic gas with no internal degrees of freedom 
confined to a half-space bounded by an infinite flat plate. The plate, which is 
impermeable and insulated, starts impulsively from rest at time t = 0, when it is 
in the plane x = 0, and thereafter moves with constant velocity i into the gas. 
We regard the distribution function f(v, x, t) as a function of x, but not of y and z, 
and assume that it is governed by the Krook kinetic equation. We further assume 
that the gas is initially at rest and in equilibrium with number density 1 and 
temperature T, , and that molecules impinging on the plate accommodate 
perfectly and subsequently are emitted with the Maxwellian distribution 
F(nB , i, TB). 

We can derive the integral equations governing this problem using the procedure 
outlined above. These equations are complicated and their numerical solution is a 
formidable task. Since our interest is in exploring numerical techniques and not in 
solving this problem for a particular collision frequency model, we limit ourselves 
to the case where Y = 1. The equations are considerably simplified in this case 
because the integration in e(t, S) becomes trivial. This assumption does not mask 
any problems in our numerical procedure, however, because the integrand in 
e(t, s) is well behaved in the general case and its numerical integration is straight- 
forward. Our decision is prompted not by any pathology in the integration but 
only by its time-consuming nature. 
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Using the vectors 

n 

[ 1 11 
m= n9 p r(u, T) = u 

3nT + nq2 u2 + 2T-i 

Ho(z) 
2d = (x/t) H,,(z) - (2T,)lj2 H,(z) , p= a! 

TA(3 + 2~~) Ho(z) - 2zfWl 1 [I B’ 
ph T, = [(u - I)[(:: 1 :)2 + 2T] 1 ’ 2s = -WmY2 27,[x,(;;~f H2(zB)] 2 1 
where q is the x component of q and 

H,(x) = 27r112 lo- ym exp[-(x - JJ)“] dy, 

z = ~/f(2T,)l/~, ZB = (2T&1/2, 

a = -nB(TB/2r)1/2, p = 40lTs, 

we can write the integral equations concisely as 

etm(x, t) = d(x, t) + (27r)-1’2 jzTt du r(u, TB) ?~gTg”~ exp[-(u - 1)“/2TB + S(U)] 

+ (27~)~l/2 1” ds es j”‘“’ du r(u, T) r~T-l/~ exp[-(u - q)2/2T], (10) 
0 -03 

et&t) = S + (27r)-‘/” 1” ds es 1’ du p(u, T) nT-l12 exp[-(u - q)2/2T], 
0 --m 

where 

s(u) = -(x - ut)/(u - l), u(s) = (x - s)/(t - s). 

The problem so formulated is characterized by a single dimensionless parameter, 
the initial temperature T, . 

We can use our numerical procedure to solve this sytem of equations. The 
similarity space variable 5 = x/t is used, and for each ti the interval [l, co) is 
partitioned into two intervals: a finite interval X on which the moments are 
represented for simplicity by tables at equispaced sample points, and its com- 
plement W on which the moments are represented by asymptotic representations 
fitted to the tabular data. Periodically with increasing time, the length and mesh 
length of X are reduced to maintain a su5cient number of sample points within 
the developing wave. Lagrange interpolation, centered if possible, is used to 
interpolate the moments in time and space. The compromise velocity quadrature 
scheme is used rather than the adaptive scheme. Given the tabular interpolation 
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scheme, the interpolation sample points are the natural choice for the collocation 
points, and the system of nonlinear equations is solved by successive substitution. 

The exact numerical solution for the initial temperature T, = 0.47407 (shock 
Mach number 2) was computed for t = 0(0.25)5, 5(0.5)10. The parameters in the 
discretization scheme were chosen to assure self-consistency at a relative error level 
of 5 x 10-4. 

Figure 1 shows the number density, flow velocity, and kinetic temperature 
profiles for t = 1,2,4,6, 8, and 10. The formation of a shock wave is evident. 
Note how the wave thickness increases linearly with time for small times. This 
property is the source of the effectiveness of the similarity space variable. If x were 
used, the mesh length would have to be extremely small initially and would have 
to be increased frequently to prevent the wasteful accumulation of sample points 
beyond the number necessary to resolve the wave. Moreover, the variation in 
time of the moments at a given point x would be large, making accurate inter- 
polation in time difficult. However, with the similarity space variable, the wave 
thickness varies slowly, and the variation in time of the moments at a given point 5 
is small. Hence the mesh length must be adjusted only occasionally, and accurate 
interpolation in time is easy. 

The solution is in remarkable qualitative agreement with the linearized solution 
obtained analytically by Mason [7] for a specularly reflecting plate using the 
energy-conserving Krook model equation. The profiles are similar in form and 

- Temperature 

FIG. 1. Evolution of the number density, flow velocity, and kinetic temperature profiles for 
Tm = 0.47407 (M = 2). 
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evolve similarly in time, except at the plate because of the different boundary 
conditions. For example, in both solutions a temperature maximum is observed 
traveling (in a plate-centered coordinate system) first at the isothermal sound 
speed Tz2 and then slowing to half the adiabatic sound speed (5T,/3)1/2 as the 
profile flattens. This agreement provides an independent check on the basic 
characteristics of the flow. 

Figures 2-4 compare the developing number density, flow velocity, and kinetic 
temperature profiles with the exact steady Mach 2 profiles computed by 
Anderson [2]. The profiles are shown in a shock-centered coordinate system whose 

x 

FIG. 2. Comparison of the steady and developing number density profiles for Tm = 0.47407 
(M = 2). 

0 
-10 -5 0 5 10 

FIG. 3. Comparison of the steady and develiping flow velocity profiles for Tm = 0.47407 
(M = 2). 
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FIG. 4. Comparison 
0.47407 (A4 = 2). 

of the steady and developing kinetic temperature profiles for T, = 

origin is chosen as the point where the flow velocity is equal to 0.5. As the initially 
steep gradients decrease with increasing time, the developing profiles approach 
the steady shock. This agreement provides an independent check on the accuracy 
of the solution. 

The conservation of mass provides another independent check: the number of 
molecules displaced by the plate should equal the increase in the number of 
molecules in the disturbed region of the gas. Our solution satisfies this condition 

-..-..- ng (t) 
-.-.-.- ” (t,t) 

------- TB(tVTm 
- T(t,t)/T, 2.2 

P 2.6 -; 
i 20781 Asymptotic - 2.1, r-8 

c- 
’ Temperature kz 

.- 2.0* 
2 

- 1.9 

2,2657 Asymptotic - 1.8 
Density 

FIG. 5. Evolution of the number density and kinetic temperature at the plate for Tm = 
0.47407 (A4 = 2). 
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with a relative error of 1 x lo-*. Another such check is furnished by the asymptotic 
behavior of the number density and kinetic temperature at the plate. Figure 5 
shows the evolution of these variables. Intuitively we expect n,(t) and n(t, t) to 
converge and decrease to a common asymptotic number density. Similarly, we 
expect TB(t) and T(t, t) to converge and increase to a common asymptotic temper- 
ature. The Rankine-Hugoniot conditions predict that the asymptotic number 
density and temperature are 2.2857 and 2.0781. The solution clearly fulfills our 
expectations. 

5. CONCLUDING REMARKS 

We have described how initial-boundary-value problems governed by model 
kinetic equations can be formulated as systems of nonlinear Volterra integral 
equations for the basic moments. We presented a numerical procedure for solving 
these equations and applied it to the nonlinear piston problem for the constant- 
collision-frequency Krook equation. Our procedure can be applied to problems 
for variable-collision-frequency models as well, but the appearance of nontrivial 
integrals of Y at the heart of the calculation leads to an order of magnitude increase 
in the computation time. Although this drastic increase can be reduced by efficient 
organization of the calculation, a more promising approach to such problems 
might be the computation of the distribution function through the direct integration 
of the kinetic equation with generalizations of finite difference methods for 
ordinary differential equations, 
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